Как печатную плату в домашних условиях. Изготовление высококачественных печатных плат в «домашних» условиях

Как печатную плату в домашних условиях. Изготовление высококачественных печатных плат в «домашних» условиях
Как печатную плату в домашних условиях. Изготовление высококачественных печатных плат в «домашних» условиях

Любой электронный девайс требует соединения воедино кучи деталей. Конечно, можно спаять девайс на монтажной плате, но при этом велик риск наделать кучу ошибок, да и сам девайс будет выглядеть весьма стремно. Торчащие во все стороны провода оценят только любители трешдизайна. Поэтому, будем делать печатную плату!

А чтобы тебе было проще, я сделал видео урок на тему изготовления печатных плат методом Лазерного Утюга ака ЛУТ.

Полный цикл, от подготовки платы с куска текстолита, до сверления и лужения.

Печатные платы делаются из фольгированного изоляционного материала (гетинакса, стеклотекстолита, фторопласта). На одну из сторон листа изоляционного материала прочно наклеена металлическая фольга, которая позволяет получить в дальнейшем печатные проводники любой формы. Они представляют собой полоску фольги, соединяющую выводы двух или более деталей, установленных на печатной плате в соответствии с принципиальной схемой радиотехнического устройства.

Что требуется для изготовления печатных плат?

0) Рисунок печатной платы в электронном виде.

1) Лазерный принтер, для печати оттиска будущей платы. Желательно чтобы принтер имел возможность прямого тракта - печать с минимальным изгибом бумаги. У меня Samsung ML1520. Печать на максимум, без всякой экономии тонера!

2) Фольгированный текстолит.

3) Фотобумага для струйной печати Lomond 120г/м глянцевая, односторонняя с улучшеным покрытием. Также неплохие результаты на бумаге Lomond 230г/м глянцевая.

4) Щетка для замши с металлическим+пластиковым ворсом (опционально)

5) Ацетон

6) Шкурка нулевка

Форма проводников, их количество и взаимное расположение определяются схемой устройства, примененными элементами, а также опытом радиолюбителя, разрабатывающего чертеж печатной платы.

При этом надо помнить, что чертежи разрабатываются для установки вполне определенных типов элементов. Если типы некоторых элементов будут другими (например, вместо конденсаторов типа К50-6 применяются конденсаторы типа К53-4 с иным расположением выводов), то чертеж платы придется соответствующим образом изменить.

Чаще всего для изготовления печатной платы радиолюбители применяют фольгированный стеклотекстолит марки СТФ или фольгированный гетинакс марки ГФ. Гетинакс по сравнению со стеклотекстолитом имеет несколько худшие характеристики, но он вполне пригоден для подавляющего большинства радиолюбительских конструкций. При работе с гетинаксом используйте легкоплавкие припои (ПОСК-50, ПОС-40, ПОС-61), так как фольга при перегреве печатных проводников во время пайки может легко отслаиваться.

Фольгированные материалы, выпускаемые промышленностью, имеют различную толщину. Обычно используют материал толщиной 1,5 мм. Но в тех случаях, когда плата больших размеров и на ней нужно устанавливать массивные элементы, применяют материал толщиной 2-2,5 мм.

Если в вашем распоряжении не окажется готового фольгированного материала, его можно сделать самостоятельно.

Вырежьте из гетинакса толщиной 1,5- 2 мм заготовку по размеру будущей платы, а из листовой медной фольги (ее толщина должна быть в пределах 0,05 - 0,1 мм) - пластину такого же размера. Зашкурьте склеиваемые поверхности мелкозернистой наждачной бумагой, очистите их от пыли и обезжирьте ацетоном или бензином. Нанесите на гетинакс и фольгу ток-кий слой клея БФ-2 и подсушите его в течение часа при комнатной температуре, затем нанесите второй слой клея и подсушите минут 30. После этого наложите фольгу на гетинакс и раскатайте ее твердым валиком от середины к краям. Обработанную таким образом заготовку поместите под пресс или в тиски и выдержите 2-3 суток.

Заготовку поместите между двумя металлическими пластинами (со стороны фольги дополнительно проложите картон) и крепко сожмите весь пакет.

Нанесение рисунка печатной платы

Подготовьте вспомогательный рисунок печатной платы со стороны печатных проводников в масштабе 1:1, точками обозначьте центры будущих отверстий.

Приклейте рисунок к фольге несколькими каплями резинового клея. С помощью кернера легкими ударами небольшого молотка поочередно переведите на фольгу центры всех будущих отверстий,

Кернер держите перпендикулярно к поверхности платы, иначе разметка будет неточной. Фольгу до этой операции не зашкуривайте, чтобы следы, оставленные кернером, были заметнее.

Снимите с заготовки рисунок и просверлите отверстия. Лучше всего делать это на сверлильном станке, поскольку отверстия для выводов деталей имеют 0 0,8 -1 мм. Можно использовать и электродрель. Для этого зажмите заготовку в тисках через картонные или гетинаксовые прокладки фольгой к себе. Сидя на стуле, поставьте локоть левой руки на верстак, на ладонь положите электродрель, а правой рукой удерживайте дрель за рукоятку.

Подачу сверла в горизонтальной плоскости регулируйте согласованными движениями обеих рук. По мере сверления отверстий изменяйте положение заготовки, в конце работы проверьте, все ли отверстия просверлены.

Зашкурьте фольгу мелкой наждачной бумагой, удалите пыль и остатки резинового клея, обезжирьте поверхность ацетоном. Теперь старайтесь до окончания обработки печатной платы не касаться фольги руками.

Чтобы на плате после травления остались печатные проводники, соответствующие участки фольги закрасьте каким-либо кислотоупорным лаком или краской. Наиболее часто радиолюбители используют нитроэмаль; она быстро сохнет и хорошо сцепляется с поверхностью фольги. Для удобства пользования краску следует наливать небольшими порциями в мелкую стеклянную или металлическую посуду и набирать ее оттуда. Переносить изображение с бумаги на фольгу можно с помощью. обычного или стеклянного рейсфедера, доработанного медицинского шприца, стержня от авторучки, из которого удален шарик, или обыкновенной заостренной спичкой. Желательно, чтобы отверстия были тоже закрыты краской, это защитит их стенки от пропитывания растворами при травлении. Как только на спичке появятся тянущиеся “нити”, меняйте порцию краски, иначе на плате они могут образовать тончайшие перемычки между проводниками, в это сделает невозможной работу устройства.

Для перенесения рисунка можно применять также асфальтобитумный лак, цветной цапонлак, клей БФ, некоторые сорта туши и чернил.

После того как все проводники изображены, проверьте качество рисунка, при необходимости поправьте вид “проводников”, устраните перемычки, проработайте зазоры между контактными площадками (они должны быть не менее 1 мм). При осмотре рисунка желательно использовать лупу.

Некоторые радиолюбители вместо краски или лака используют липкую ленту - скоч, нарезая из нее “проводники” и “контактные площадки” и наклеивая их на фольгу в соответствии с рисунком. Тем, кто захочет воспользоваться этим способом подготовки платы к травлению, посоветуем очень внимательно следить за качеством отрезков скоча, иначе в проводниках могут оказаться разрывы. Более высокое качество рисунка можно получить, применяя специальные приборы для вычерчивания. С описанием конструкции одного из них вы можете познакомиться, прочитав книгу Ю. В. Бездельева “Плоские и объемные модули в любительских конструкциях” (выпущенную в издательстве “Энергия” в 1977 году).

Не защищенные краской, лаком или липкой лентой участки фольги удалите, протравливая плату в одном из рекомендуемых растворов. Основным материалом для травления служит раствор хлорного железа - оно продается в магазинах химических реактивов в порошке либо в гранулах. Для получения раствора нужно насыпать в стакан примерно 3/4 порошка хлорного железа и долить теплой водой.

Травление плат

Для травления используйте стеклянную или пластмассовую посуду, например, фотографическую кювету. Положите плату в раствор рисунком вверх, вся поверхность платы должна быть залита раствором. Процесс травления ускоряется, если сосуд покачивать или подогревать. При травлении образуются ядовитые испарения, поэтому работайте либо а хорошо проветриваемом помещении, либо на открытом воздухе. Периодически проверяйте состояние платы, приподнимая ее для осмотра деревянными или пластмассовыми палочками, металлические инструменты и приспособления для этой цели применять нельзя. Убедившись в том, что фольга в незащищенных местах исчезла полностью, прекратите процесс травления,

Перенесите, например, с помощью бельевой прищепки плату под струю проточной воды и тщательно промойте, после чего просушите ее при комнатной температуре.

Если вы Собираетесь использовать раствор повторно, Слейте его в плотно закрывающуюся посуду и храните в прохладном темном месте. Учтите, что при повторном использовании эффективность раствора снижается.

При работе с раствором хлорного железа помните, что он не должен попадать на руки и другие открытые части тела, а также на поверхности ванн и раковин, поскольку на последних могут остаться трудно смываемые желтые пятна.

Раствор хлорного железа можно изготовить самостоятельно, если обработать железные опилки соляной кислотой. Возьмите 25 весовых частей 10-процентной соляной кислоты и смешайте с одной весовой частью железных опилок. Смесь в плотно закрытой посуде выдержите 5 суток в темном месте, после чего ее можно использовать. Переливая раствор в сосуд для травления, не взбалтывайте его: осадок должен остаться в той посуде, в которой раствор готовился.

Длительность процесса травления платы в растворе хлорного железа зависит от концентрации раствора, его температуры, толщины фольги и обычно составляет 40 - 50 минут.

Растворы для травления плат можно приготовить не только на основе хлорного железа. Более доступным может оказаться для многих радиолюбителей водный раствор медного купороса и поваренной соли. Приготовить его нетрудно - растворите в 500 мл горячей воды (t около 80°С) 4 столовые ложки поваренной соли и 2 столовые ложки растолченного в порошок медного купороса. Если раствор применять сразу, его эффективность будет невысокой, она значительно повышается после выдержки раствора в течение двух-трех недель.

Время травления платы в таком растворе - три часа и более.

Значительного сокращения времени травления можно добиться, используя растворы на основе кислот. Процесс травления платы, например, в концентрированном растворе азотной кислоты длится всего 5-7 минут.

В этом случае рисунок наносится бакелитоеым лаком средней вязкости помощью стеклянного рейсфедера ипишущего узла авторучки с удаленным шариком. При заправке инструмента опустите его рабочий конец в лак, а с другого конца создайте разрежение, подсасывая воздух через хлорвиниловую трубочку, .После тpaвления плату тщательно промойте водой с мылом.

Хорошие результаты дает применение раствора соляной кислоты и перикиси водорода. Для приготовлени возьмите 20 частей (по объему) соляной кислоты плотностью 1,19 г/см.куб, 4 частей аптечной перекиси водорода 40 частей воды. Сначала воду смешайте с перекисью водорода, затем осторожно добавьте кислоту. Рисунок этом случае делается нитрокраской.

Растворы на основе кислот заливайте в стеклянную или керамическую посуду, работайте с ними только в хорошо проветриваемых помещениях.

Способ гальванического травления плат

Для этого потребуется источник постоянного тока напряжением 25-30 В и концентрированный раствор поваренной соли. При помощи зажима “крокодил” соедините положительный полюс источника с незакрашенными участками фольги платы, а к оголенному и свернутому в петлю концу провода, идущего от отрицательного полюса источника, прикрепите ватный тампон. Последний обильно пропитайте раствором соли и, слегка прижимая к фольге, перемещайте по поверхности платы, движение тампона должно напоминать вырисовывание цифры 8. Фольга при этом будет как бы “смываться”. По мере загрязнения тампон меняйте.

Во всех случаях после окончани процесса травления платы тщательно промывают в проточной воде (например, под водопроводным краном, просушивают и только после этого сни мают краску ацетоном, уайт-спиритом и другими подобными растворителями. Краска, оставшаяся в отверстиях удаляется тонким шилом или иглой.

Теперь зачистите проводники до блеска самой мелкозернистой наждачной бумагой или чернильным ластиком, удалите с платы все посторонние частицы и залудите проводники следующим способом: смажьте их спиртоканифольным флюсом (15% канифоли и 15% этилового спирта), возьмите отрезок оплетки от экранированног тровода и пропитайте его этим ж флюсом, наберите на жало паяльника немного припоя ПОС-61 и через оплетку “втирайте” припой в фольгу. Скорость движения паяльника должна быть такой, чтобы проводники хорошо залуживались, но не отслаивались от материала платы. При выполнени этой работы плату желательно закрепить неподвижно. Можно ограничиться залуживанием только контактных площадок.

Закончив лужение проводников, удалите остатки флюса и лишний припой (в том числе из отверстий), проверьте качество изготовления платы и приступайте к установке на нее радиоэлементов.

Физико-механические свойства ма­териалов должны удовлетворять уста­новленным ТУ и обеспечивать качест­венное изготовление ПП в соответст­вии с типовыми ТП. Для изготовле­ния плат применяют слоистые плас­тики – фольгированные диэлектрики, плакированные электролитической медной фольгой толщиной 5, 20, 35, 50, 70 и 105 мкм с чистотой меди не менее 99,5 %, шероховатостью поверх­ности не менее 0,4–0,5 мкм, которые поставляются в виде листов размера­ми 500×700 мм и толщиной 0,06–3 мм. Слоистые пластики должны об­ладать высокой химической и терми­ческой стойкостью, влагопоглощением не более 0,2–0,8 %, выдерживать термоудар (260°С) в течение 5–20с. Поверхностное сопротивление диэлектриков при 40°С и относительной влажности 93 % в течение 4 сут. долж­но быть не менее 10 4 МОм. Удельное объемное сопротивление диэлектри­ка – не менее 5·10 11 Ом·см. Проч­ность сцепления фольги с основанием (полоска шириной 3мм) – от 12 до 15 МПа. В качестве основы в слоистых пла­стиках используют гетинакс , представ­ляющий собой спрессованные слои электроизоляционной бумаги, пропи­танные фенольной смолой, стеклотекстолиты – спрессованные слои стекло­ткани, пропитанные эпоксифенольнои смолой, и другие материалы (табл. 2.1).

Табл.2.1. Основные материалы для изготовления плат.

Материал Марка Толщина Область применения
Фольги, мкм Материала, мм
Гетинакс: фольгированный огнестойкий влагостойкий Стеклотекстолит: фольгированный огнестойкий теплостойкий травящийся с адгезионным слоем с тонкой фольгой Фольгированный диэлектрик: тонкий для МПП для микроэлектроники Стеклоткань прокладочная Лавсан фольгированный Фторопласт: фольгированный армированный Полиамид фольгированный Сталь эмалированная Алюминий анодированный Керамика алюмооксидная ГФ-1(2) ГПФ-2-50Г ГОФВ-2-35 СФ-1(2) СФО-1(2) СТФ-1(2) ФТС-1(2) СТЭК СТПА-1 ФДП-1 ФДМ-1(2) ФДМЭ-1(2) СП-1-0,0025 ЛФ-1 ЛФ-2 ФФ-4 ФАФ-4Д ПФ-1 ПФ-2 – – – 35, 50 35, 50 18, 35 18, 35 – – – – – 1-3 1-3 1-3 0,8-3 0,9-3 0,1-3 0,08-0,5 1,0-1,5 0,1-3 0,5 0,2-0,35 0,1-0,3 0,0025 0,05 0,1 1,5-3 0,5-3 0,05 0,1 1-5 0,5-3 2-4 ОПП ДПП ДПП ОПП, ДПП ОПП, ДПП ОПП, ДПП МПП, ДПП ДПП ОПП, ДПП МПП МПП МПП МПП ГПП ГПП ДПП ГПП ГПП ГПП ДПП ДПП, ГИМС ДПП, МПП

Гетинакс, обладая удовлетворитель­ными электроизоляционными свойст­вами в нормальных климатических условиях, хорошей обрабатываемо­стью и низкой стоимостью, нашел применение в производстве бытовой РЭА. Для ПП, эксплуатируемых в сложных климатических условиях с широким диапазоном рабочих темпе­ратур (– 60...+180°С) в составе элек­тронно-вычислительной аппаратуры, техники связи, измерительной техни­ки, применяют более дорогие стекло текстолиты. Они отличаются широ­ким диапазоном рабочих температур, низким (0,2 – 0,8 %) водопоглощением, высокими значениями объемного и поверхностного сопротивлений, стой­костью к короблению. Недостатки– возможность отслаивания фольги при термоударах, наволакивание смолы при сверлении отверстий. Повышение огнестойкости диэлектриков (ГПФ, ГПФВ, СПНФ, СТНФ), используемых в блоках питания, достигается введе­нием в их состав антипиренов (напри­мер, тетрабромдифенилпропана).

Для изготовления фольгированных диэлектриков используется в основном электролитическая медная фольга, од­на сторона которой должна иметь гладкую поверхность (не ниже вось­мого класса чистоты) для обеспечения точного воспроизведения печатной схе­мы, а другая должна быть шерохова­той с высотой микронеровностей не менее 3 мкм для хорошей адгезии к диэлектрику. Для этого фольгу под­вергают оксидированию электрохимическим путем в растворе едкого натра. Фольгирование диэлектриков осуще­ствляют прессованием при температу­ре 160 – 180°С и давлении 5 –15 МПа.

Керамические материалы характери­зуются высокой механической проч­ностью, которая незначительно изме­няется в диапазоне температур 20–700°С, стабильностью электрических и геометрических параметров, низки­ми (до 0,2%) водопоглощением и газовыделением при нагреве в вакууме, однако являются хрупкими и имеют высокую стоимость.

В качестве металлической основы плат используют сталь и алюминий. На стальных основаниях изолирова­ние токоподводящих участков осуще­ствляют с помощью специальных эма­лей, в состав которых входят оксиды магния, кальция, кремния, бора, алю­миния или их смеси, связка (поливинилхлорид, поливинилацетат или метилметакрилат) и пластификатор. Пленку наносят на основание путем прокатки между вальцами с последующим вжиганием. Изолирующий слой толщиной от нескольких десятков до сотен микрометров с сопротивлением изоляции 10 2 – 10 3 МОм на поверхно­сти алюминия получают анодным ок­сидированием. Теплопроводность ано­дированного алюминия 200 Вт/(м·К), а стали – 40 Вт/(м·К). В качестве основы для ПП СВЧ-диапазона используют неполярные (фто­ропласт, полиэтилен, полипропилен) и полярные (полистирол, полифениленоксид) полимеры. Для изготовления микроплат и микросборок СВЧ-диапазона применяют также керамиче­ские материалы, имеющие стабильные электрические характеристики и гео­метрические параметры.

Полиамидная пленка используется для изготовления гибких плат, обла­дающих высокой прочностью на рас­тяжение, химической стойкостью, не­сгораемостью. Она имеет наиболее высокую среди полимеров темпера­турную устойчивость, так как не теря­ет гибкости от температур жидкого азота до температур эвтектической пайки кремния с золотом (400°С). Кроме того, она характеризуется низ­ким газовыделением в вакууме, радиа­ционной стойкостью, отсутствием на­волакивания при сверлении. Недос­татки – повышенное водопоглощение и высокая стоимость.

Формирование рисунка схемы.

Нанесение рисунка схемы или за­щитного рельефа требуемой конфигу­рации необходимо при осуществлении процессов металлизации и травления. Рисунок должен иметь четкие грани­цы с точным воспроизведением тон­ких линий, быть стойким к травиль­ным растворам, не загрязнять платы и электролиты, легко сниматься после выполнения своих функций. Перенос рисунка печатного монтажа на фольгированный диэлектрик осуществляют методами сеткографии, офсетной пе­чати и фотопечати. Выбор метода за­висит от конструкции платы, требуе­мой точности и плотности монтажа, серийности производства.

Сеткографический метод нанесения рисунка схемы наиболее рентабелен для массового и крупносерийного производства плат при минимальной ширине проводников и расстоянии между ними > 0,5 мм, точность вос­произведения изображения ±0,1 мм. Суть заключается в нанесении на пла­ту специальной кислотостойкой крас­ки путем продавливания ее резиновой лопаткой (ракелем) через сетчатый трафарет, в котором необходимый ри­сунок образован открытыми ячейками сетки (рис. 2.4).

Для изготовления трафарета ис­пользуют металлические сетки из не­ржавеющей стали с толщиной прово­локи 30–50 мкм и частотой плетения 60–160 нитей на 1 см, металлизиро­ванного нейлонового волокна, имею­щего лучшую эластичность, с толщи­ной нити 40 мкм и частотой плетения до 200 нитей на 1 см, а также из по­лиэфирных волокон и капрона

Од­ним из недостатков сеток является их растяжение при многократном использовании. Самой большой стойкостью обладают сетки из нержавеющей стали (до 20 тыс. отпечатков), метал­лизированных пластмасс (12 тыс.), по­лиэфирных волокон (до 10 тыс.), ка­прона (5 тыс.).

Рис. 2.4. Принцип трафаретной печати.

1 – ракель; 2 – трафарет; 3 – краска; 4 – основание.

Изображение на сетке получают с помощью экспонирования жидкого или сухого (пленочного) фоторезиста, после проявления которого образуют­ся открытые (свободные от рисунка) ячейки сетки. Трафарет в сеткографи­ческой раме устанавливают с зазором 0,5–2 мм от поверхности платы так, чтобы контакт сетки с поверхностью платы был только в зоне нажатия на сетку ракелем. Ракель представляет собой прямоугольную заточенную по­лосу резины, установленную по отно­шению к подложке под углом 60–70°.

Для получения рисунка ПП исполь­зуют термоотверждающиеся краски СТ 3.5;

СТ 3.12, которые сушат либо в термошкафу при температуре 60°С в течение 40 мин, либо на воздухе в те­чение 6 ч, что удлиняет процесс сеткографии. Более технологичными яв­ляются фотополимерные композиции ЭП-918 и ФКП-ТЗ с ультрафиолетовым отверждением в течение 10–15с, что является решающим фактором при автоматиза­ции процесса. При однократном на­несении покрытие зеленого цвета имеет толщину 15–25 мкм, воспроиз­водит рисунок с шириной линий и за­зорами до 0,25 мм, выдерживает погружение в расплав припоя ПОС-61 при температуре 260°С до 10 с, воз­действие спиртобензиновой смеси до 5 мин и термоциклирование в интер­вале температур от – 60 до +120 °С. После нанесения рисунка плату про­сушивают при температуре 60 °С в те­чение 5–8 мин, контролируют качест­во и при необходимости подвергают ретуши. Удаление защитной маски после травления или металлизации осуществляют химическим методом в 5 %-м растворе едкого натра в течение 10–20 с.

Табл. 2.2. Оборудование для трафаретной печати.

Для трафаретной печати использу­ют полуавтоматическое и автоматиче­ское оборудование, отличающееся фор­матом печати и производительностью (табл. 2.2). Автоматические линии тра­фаретной печати фирм Chemcut (США), Resco (Италия) имеют авто­матические системы подачи и уста­новки плат, движения ракеля и пода­чи резиста. Для сушки резиста приме­няют ИК-печитуннельного типа.

Офсетная печать применяется для крупносерийного производства ПП при малой номенклатуре схем. Разре­шающая способность 0,5–1 мм, точ­ность получаемого изображения со­ставляет ±0,2 мм. Суть метода в том, что в клише, несущее изображение схемы (печатные проводники, кон­тактные площадки), закатывается краска. Затем она снимается офсетным валиком, покрытым резиной, пе­реносится, на изоляционное основание и подвергается сушке. Клише и осно­вание платы располагаются друг за другом на основании машины для оф­сетной печати (рис. 2.5)

Рис.2.5. Схема офсетной печати.

1 – офсетный валик; 2 – клише; 3 – плата;

4 – валик для нанесения краски; 5 – прижимной валик.

Точность печати и резкость конту­ров определяются параллельностью валика и основания, типом и конси­стенцией краски. С помощью одного клише можно выполнить неограни­ченное число оттисков. Производи­тельность метода ограничена длитель­ностью колебательного цикла (нанесе­ние краски – перенос) и не превыша­ет 200–300 оттисков в час. Недостат­ки метода: длительность процесса изготовления клише, сложность измене­ния рисунка схемы, трудность получе­ния беспористых слоев, высокая стои­мость оборудования.

Фотографический метод нанесения рисунка позволяет получать минималь­ную ширину проводников и расстоя­ния между ними 0,1–0,15 мм с точ­ностью воспроизведения до 0,01 мм. С экономической точки зрения этот способ менее рентабельный, но по­зволяет получать максимальную раз­решающую способность рисунка и по­этому применяется в мелкосерийном и серийном производстве при изго­товлении плат высокой плотности и точности. Способ основан на исполь­зовании светочувствительных компози­ций, называемых фоторезистами ,ко­торые должны обладать: высокой чув­ствительностью; высокой разрешаю­щей способностью; однородным по всей поверхности беспористым слоем с высокой адгезией к материалу пла­ты; устойчивостью к химическим воз­действиям; простотой приготовления, надежностью и безопасностью приме­нения.

Фоторезисты разделяются на нега­тивные и позитивные. Негативные фоторезисты под действием излучения образуют защитные участки рельефа в результате фотополимеризации и задубливания. Освещенные участки пе­рестают растворяться и остаются на поверхности подложки. Позитивные фо­торезисты передают рисунок фото­шаблона без изменений. При световой обработке экспонированные участки разрушаются и вымываются.

Для получения рисунка схемы при использовании негативного фоторезиста экспонирование производят через негатив, позитивного – через пози­тив. Позитивные фоторезисты имеют более высокую разрешающую способ­ность, что объясняется различиями в поглощении излучения фоточувстви­тельным слоем. На разрешающую спо­собность слоя влияют дифракционное огибание света на краю непрозрачно­го элемента шаблона и отражение све­та от подложки (рис. 2.6, а).

Рис.2.6. Экспонирование светочувствительного слоя:

а – экспонирование; б – негативный фоторезист; в – позитивный фоторезист;

1 –дифракция; 2 –рассеяние; 3 –отражение; 4 –шаблон; 5 – резист; 6 – подложка.

В негативном фоторезисте дифрак­ция не играет заметной роли, по­скольку шаблон плотно прижат к резисту, но в результате отражения во­круг защитных участков появляется ореол, который снижает разрешаю­щую способность (рис. 2.6, б). В слое позитивного резиста под влиянием дифракции разрушится и вымоется при проявлении только верхняя об­ласть резиста под непрозрачными уча­стками фотошаблона, что мало ска­жется на защитных свойствах слоя. Свет, отраженный от подложки, может вызвать некоторое разрушение прилегающей к ней области, но про­явитель эту область не вымывает, так как под действием адгезионных сил слой опустится вниз, вновь образуя четкий край изображения без ореола (рис. 2.6, в).

В настоящее время в промышлен­ности используются жидкие и сухие (пленочные) фоторезисты. Жидкие фоторезисты – коллоидные растворы синтетических полимеров, в частности поливинилового спирта (ПВС). Наличие гидроксильной груп­пы ОН в каждом звене цепи опреде­ляет высокую гигроскопичность и по­лярность поливинилового спирта. При добавлении к водному раствору ПВС бихромата аммония происходит «очув­ствление» последнего. Фоторезист на основе ПВС наносят на предваритель­но подготовленную поверхность пла­ты путем окунания заготовки, поли­вом с последующим центрифугирова­нием. Затем слои фоторезиста сушат в термошкафу с циркуляцией воздуха при температуре 40°С в течение 30–40 мин. После экспонирования осу­ществляется проявление фоторезиста в теплой воде. Для повышения хими­ческой стойкости фоторезиста на ос­нове ПВС применяют химическое дубление рисунка ПП в растворе хромового ангидрида, а затем термиче­ское дубление при температуре 120°С в течение 45–50 мин. Раздубливание (снятие) фоторезиста проводят в тече­ние 3–6 с в растворе следующего состава:

– 200–250 г/л щавелевой кисло­ты,

– 50–80 г/л хлористого натрия,

– до 1000 мл воды при температуре 20 °С.

Достоинства фоторезиста на основе ПВС – низкие токсичность и пожароопасность, проявление с помощью воды. К недостаткам его относят эф­фект темнового дубления (поэтому срок хранения заготовок с нанесен­ным фоторезистом не должен превы­шать 3–6 ч), низкую кислото- и щелочеустойчивость, трудность автома­тизации процесса получения рисунка, трудоемкость приготовления фоторезиста, низкую чувствительность.

Улучшение свойств жидких фоторе­зистов (устранение дубления, повы­шение кислотостойкости) достигается в фоторезисте на основе циннамата. Светочувствительным компонентом фо­торезиста этого типа является поливинилциннамат (ПВЦ) – продукт взаи­модействия поливинилового спирта и хлорангидрида коричной кислоты. Разрешающая способность его при­мерно 500 лин/мм, проявление осуще­ствляется в органических растворите­лях – трихлорэтане, толуоле, хлор­бензоле. Для интенсификации про­цесса проявления и удаления фоторе­зиста ПВЦ используют ультразвуко­вые колебания. Диффузия в УЗ-поле сильно ускоряется за счет акустиче­ских микропотоков, а образующиеся кавитационные пузырьки при захло­пывании отрывают участки фоторези­ста от платы. Время проявления со­кращается до 10 с, т. е. в 5–8 раз по сравнению с обычной технологией. К недостаткам фоторезиста ПВЦ от­носятся его высокая стоимость, ис­пользование токсичных органических растворителей. Поэтому резисты ПВЦ не нашли широкого применения в изготовлении ПП, а используются глав­ным образом при изготовлении ИМС.

Фоторезисты на основе диазосоединений применяют в основном как по­зитивные. Светочувствительность диазосоединений обусловлена наличием в них групп, состоящих из двух атомов азота N 2 (рис. 2.7).

Рис.2.7. Молекулярные связи в структуре диазосоединений.

Сушка слоя фото­резиста проводится в две стадии:

– при температуре 20°С в течение 15–20 мин для испарения легколетучих компо­нентов;

– в термостате с циркуляцией воздуха при температуре 80 °С в те­чение 30–40 мин.

Проявителями яв­ляются растворы тринатрийфосфата, соды, слабых щелочей. Фоторезисты ФП-383, ФН-11 на основе диазосоединений имеют разрешающую способ­ность 350–400 лин/мм, высокую хи­мическую стойкость, однако стои­мость их высока.

Сухие пленочные фоторезисты марки Riston впервые разработаны в 1968 г. фирмой Du Pont (США) и имеют тол­щину 18 мкм (красный цвет), 45 мкм (голубой) и 72 мкм (рубиновый). Су­хой пленочный фоторезист марки СПФ-2 выпускается с 1975 г. толщи­ной 20, 40 и 60 мкм и представляет собой полимер на основе полиметилметакрилата 2 (рис.2.8), расположен­ный между полиэтиленовой 3 и лавса­новой / пленками толщиной 25 мкм каждая.

Рис.2.8. Структура сухого фоторезиста.

В СНГ выпускаются следующие типы сухих пленочных фоторезистов:

– проявляемые в органических веще­ствах – СПФ-2, СПФ-АС-1, СРФ-П;

– водно-щелочные – СПФ-ВЩ2, ТФПК;

– повышенной надежности – СПФ-ПНЩ;

– защитные – СПФ-З-ВЩ.

Перед накаткой на поверхность ос­нования ПП защитная пленка из по­лиэтилена удаляется и сухой фоторе­зист наносится на плату валиковым методом (плакирование, ламинирова­ние) при нагреве до 100°С со скоро­стью до 1 м/мин с помощью специ­ального устройства, называемого ла­минатором. Сухой резист полимеризуется под действием ультрафиолетового излучения, максимум его спектраль­ной чувствительности находится в об­ласти 350 нм, поэтому для экспониро­вания используют ртутные лампы. Проявление осуществляется в маши­нах струйного типа в растворах метилхлорида, диметилформамида.

СПФ-2 – сухой пленочный фоторе­зист, аналогичный по свойствам фото­резисту Riston, допускает обработку как в кислых, так и в щелочных сре­дах и используется при всех методах изготовления ДПП. При его примене­нии необходима герметизация обору­дования для проявления. СПФ-ВЩ обладает более высокой разрешающей способностью (100–150 линий/мм), стоек в кислой среде, обрабатывается в щелочных растворах. В состав фото­резиста ТФПК (в полимеризующую композицию) входит метакриловая ки­слота, улучшающая эксплуатационные характеристики. Для него не требуется термообработка защитного рельефа перед нанесением гальванопокрытия. СПФ-АС-1 позволяет получать рису­нок ПП как по субтрактивной, так и по аддитивной технологии, поскольку он стоек и в кислых, и в щелочных средах. Для улучшения адгезии свето­чувствительного слоя к медной под­ложке в состав композиции введен бензотриазол.

Применение сухого фоторезиста зна­чительно упрощает процесс изготовле­ния ПП, увеличивает процент выхода годных изделий с 60 до 90 %. При этом:

– исключаются операции сушки, дубления и ретуширования, а также за­грязнения, нестабильность слоев;

– обес­печивается защита металлизированных отверстий от затекания фоторезиста;

– достигается высокая автоматизация и механизация процесса изготовления ПП и контроля изображения.

Установка для нанесения сухого пленочного фоторезиста – ламинатор (рис.2.9) состоит из валиков 2, по­дающих плату 6 и прижимающих фо­торезист к поверхности заготовок, ва­ликов 3 и 4 для снятия защитной по­лиэтиленовой пленки, бобины с фоторезистом 5, нагревателя 1 с терморегу­лятором.

Рис.2.9. Схема ламинатора.

Скорость движения заготов­ки платы достигает 0,1 м/с, температу­ра нагревателя (105 ±5) °С. Конструкция установки АРСМ 3.289.006 НПО «Ратон» (Беларусь) обеспечивает постоянное усилие прижатия независи­мо от зазора, устанавливаемого между валиками-нагревателями. Максималь­ная ширина заготовки ПП 560 мм. Особенностью накатывания является опасность попадания пыли под слой фоторезиста, поэтому установка долж­на работать в гермозоне. Накатанная пленка фоторезиста выдерживается не менее 30 мин перед экспонированием для завершения усадочных процессов, которые могут вызвать искажение ри­сунка и уменьшить адгезию.

Проявление рисунка осуществляет­ся в результате химического и механи­ческого воздействия метилхлороформа. За оптимальное время проявления принимается время, в 1,5 раза боль­шее, чем необходимо для полного удаления незадубленного СПФ. Каче­ство операции проявления зависит от пяти факторов: времени проявления, температуры проявления, давления проявителя в камере, загрязнения про­яви геля, степени окончательной про­мывки. По мере накопления в прояви­теле растворенного фоторезиста ско­рость проявления замедляется. После проявления плату необходимо отмыть водой до полного удаления остатков растворителя. Продолжительность опе­рации проявления СПФ-2 при темпе­ратуре проявителя 14–18°С, давлении раствора в камерах 0,15МПа и скоро­сти движения конвейера 2,2 м/мин со­ставляет 40–42 с.

Удаление и проявление фоторезиста осуществляется в машинах струйного типа (ГГМЗ.254.001, АРСМЗ.249.000) в хлористом метилене. Это сильный растворитель, поэтому операция сня­тия фоторезиста должна выполняться быстро (за 20–30 с). В установках пре­дусматривается замкнутый цикл ис­пользования растворителей, после оро­шения плат растворители поступают в дистиллятор, а затем чистые раствори­тели переключаются на повторное ис­пользование.

Экспонирование фоторезиста пред­назначено для инициирования в нем фотохимических реакций и проводит­ся в установках, имеющих источники света (сканирующие или неподвиж­ные) и работающие в ультрафиолето­вой области. Для плотного прилега­ния фотошаблонов к заготовкам плат используют рамы, где создается раз­режение. Установка экспонирования СКЦИ.442152.0001 НПО «Ратон» при рабочем поле загрузочных рам 600×600 мм обеспечивает производитель­ность 15 плат/ч. Время экспозиции ртутной лампой ДРШ-1000 1–5 мин. После экспонирования для заверше­ния темновой фотохимической реак­ции необходима выдержка при ком­натной температуре в течение 30 мин перед удалением лавсановой защит­ной пленки.

Недостатки сухого фоторезиста – не­обходимость приложения механическо­го усилия при накатке, что недопусти­мо для ситалловых подложек, пробле­ма утилизации твердых и жидких от­ходов. На каждые 1000 м 2 материала образуется до 40 кг твердых и 21 кг жидких отходов, утилизация которых является экологической проблемой.

Для получения проводящего рисун­ка на изоляционном основании как сеткографическим, так и фотохимиче­ским способом необходимо применять фотошаблоны, представляющие собой графическое изображение рисунка в масштабе 1:1 на фотопластинках или фотопленке. Фотошаблоны выполня­ют в позитивном изображении при наращивании проводящих участков на лентах и в негативном изображении, когда проводящие участки получают травлением меди с пробельных мест.

Геометрическая точность и качество рисунка ПП обеспечиваются в первую очередь точностью и качеством фото­шаблона, который должен иметь:

– контрастное черно-белое изображе­ние элементов с четкими и ровными границами при оптической плотности черных полей не менее 2,5 ед., прозрачных участков не более 0,2 ед., измеренной на денситомере типа ДФЭ-10;

– минимальные дефекты изображения (темные точки на пробельных местах, прозрачные точки на черных полях), которые не превышают 10–30 мкм;

– точность элементов выполнения рисунка ±0,025 мм.

В большей степени перечисленным требованиям удовлетворяют сверхкон­трастные фотопластинки и пленки «Микрат-Н» (СССР), фотопластинки типа ФТ-41П (СССР), РТ-100 (Япо­ния) и Agfalit (Германия).

В настоящее время применяются два основных способа получения фо­тошаблонов: фотографирование их с фотооригиналов и вычерчивание све­товым лучом на фотопленке с помо­щью координатографов с программ­ным управлением либо лазерным лу­чом. При изготовлении фотооригина­лов рисунок ПП выполняют в увели­ченном масштабе (10:1, 4:1, 2:1) на малоусадочном материале путем вы­черчивания, изготовления аппликаций или резания по эмали. Способ аппли­кации предусматривает наклеивание заранее подготовленных стандартных элементов на прозрачную основу (лав­сан, стекло и др.). Первый способ ха­рактеризуется низкой точностью и большой трудоемкостью, поэтому используется в основном для макетных образцов плат.

Резание по эмали применяют для ПП с высокой плотностью монтажа. Для этого полированное листовое стекло покрывают непрозрачным сло­ем эмали, а вырезание рисунка схемы осуществляют на координатографе с ручным управлением. Точность полу­чения рисунка 0,03–0,05 мм.

Изготовленный фотооригинал фо­тографируют с необходимым умень­шением на высококонтрастную фотопластину с помощью фоторепродук­ционных полиграфических камер типа ПП-12, ЭМ-513, Klimsch (Германия) и получают фотошаблоны, которые могут быть контрольными и рабочи­ми. Для тиражирования и изготовле­ния рабочих, одиночных, а также групповых фотошаблонов применяют метод контактной печати с негатив­ной копии контрольного фотошабло­на. Операция выполняется на мульти­пликаторе модели АРСМ 3.843.000 с точностью ±0,02 мм.

Недостатки такого метода – боль­шая трудоемкость получения фото­оригинала, требующего высококвали­фицированного труда, и трудность равномерного освещения фотоориги­налов значительной площади, что снижает качество фотошаблонов.

Возрастающая сложность и плот­ность рисунка ПП, необходимость увеличения производительности труда привели к разработке метода изготов­ления фотошаблонов сканирующим лучом непосредственно на фотоплен­ке. Для изготовления фотошаблона световым лучом разработаны коорди­натографы с программным управлени­ем. С переходом на машинное проек­тирование плат необходимость вычер­чивания чертежа отпадает, так как по­лученная с ЭВМ перфолента с коор­динатами проводников вводится в считывающее устройство координато­графа, на котором автоматически вы­полняется фотошаблон.

Координатограф (рис. 2.10) состоит из вакуумного стола 8, на котором за­крепляют фотопленку, фотоголовки и блока управления /. Стол перемеща­ется с высокой точностью в двух вза­имно перпендикулярных направлени­ях с помощью прецизионных ходовых винтов 9 и 3, которые приводятся во вращение шаговыми двигателями 2 и 10. Фотоголовка включает осветитель 4, фокусирующую систему 5, круговую диафрагму 6 и фотозатвор 7. Диа­фрагма имеет набор отверстий (25– 70), оформляющих определенный эле­мент рисунка ПП, и закрепляется на валу шагового двигателя. В соответст­вии с программой работы сигналы от блока управления подаются на шаго­вые двигатели привода стола, диа­фрагмы и на осветитель. Современные координатографы (табл. 5.4) снабжа­ются системами автоматического под­держания постоянного светового ре­жима, вывода из ЭВМ информации о фотошаблонах на пленку в масштабах 1:2; 1:1; 2:1; 4:1.

Рис. 5.10. Схема координатографа.

КАК ДЕЛАЮТ ПЕЧАТНЫЕ ПЛАТ Ы ? (Автор А.Акулин)

Вкратце остановимся на наиболее распространенном технологическом процессе изготовления печатных плат (ПП) – гальванохимической субтрактивной технологии. Основой печатной плат ы является подложка из стеклотекстолит а – диэлектрика, представляющего собой спрессованные листы стеклоткани, пропитанной эпоксидным компаундом. Стеклотекстолит производят и отечественные завод ы – одни выпускают его из своего сырья, другие закупают пропитанную стеклоткань за рубежом и только прессуют ее. К сожалению, практика показывает, что наиболее качественные ПП получаются на импортном материале – плат у не коробит, медная фольга не отслаивается, стеклотекстолит не расслаивается и не выделяет газы при нагреве. Поэтому повсеместно применяют импортный стеклотекстолит типа FR-4 – стандартизированный огнеупорный материал.

Для изготовления двухсторонней ПП (ДПП ) используется стеклотекстолит , с обеих сторон ламинированный медной фольгой. Сначала на плат е сверлят отверстия, подлежащие металлизации. Затем они подготавливаются к осаждению металла – производится их химическая очистка, выравнивание и «активация» внутренней поверхности.

Для формирования проводников на поверхность медной фольги наносится фоторезистивный материал, полимеризующийся на свету (позитивный процесс). Затем плат а засвечивается через фотошаблон – пленку, на которую на фотоплоттере нанесен рисунок проводников ПП (где проводники непрозрачны). Фоторезист проявляется и смывается в тех местах, где он не был засвечен. Открытыми оказываются только участки, где должны остаться медные проводники.

Далее производят гальваническое нанесение меди на стенки отверстий. При этом медь осаждается как внутри отверстий, так и на поверхность плат ы , поэтому толщина проводников складывается из толщины медной фольги и слоя гальванической меди. На открытые участки меди гальванически осаждают олово (или золото), а оставшийся фоторезист смывают специальным раствором. Далее медь, не защищенная оловом, стравливается. При этом проводники в сечении приобретают форму трапеции – агрессивное вещество постепенно «съедает» наружные слои меди, прокрадываясь под защитный материал.

Как правило, на ПП наносится паяльная маска (она же «зеленка») – слой прочного материала, предназначенного для защиты проводников от попадания припоя и флюса при пайке, а также от перегрева. Маска закрывает проводники и оставляет открытыми контактные площадки и ножевые разъемы. Способ нанесения паяльной маски аналогичен нанесению фоторезиста – при помощи фотошаблона с рисунком площадок нанесенный на ПП материал маски засвечивается и полимеризуется, участки с площадками для пайки оказываются незасвеченными и маска смывается с них после проявки. Чаще всего паяльная маска наносится на слой меди. Поэтому перед ее формированием защитный слой олова снимают – иначе олово под маской вспучится от нагревания плат ы при пайке. Маркировка компонентов наносится краской, методом сеткографии или фотопроявления.

На готовой печатной плат е, защищенной паяльной маской, площадки для пайки покрываются оловянно-свинцовым припоем (например, ПОС-61). Наиболее современный процесс его нанесения – горячее лужение с выравниванием воздушным ножом (HAL – hot air leveling). Плат у погружают на короткое время в расплав припоя, затем направленной струей горячего воздуха продувают металлизированные отверстия и снимают излишки припоя с площадок.

В покрытой припоем плат е сверлят крепежные отверстия (в них не должно быть внутренней металлизации), фрезеруют плат у по контуру, вырезая из завод ской заготовки, и передают на конечный контроль. После визуального просмотра и/или электрического тестирования плат ы упаковывают, снабжают биркой и отгружают на склад.

Многослойные печатные плат ы (МПП ) более сложны в производстве. Они представляют собой как бы слоеный пирог из двухсторонних плат , между которыми проложены прокладки из стеклоткани, пропитанной в эпоксидной смоле – этот материал называется препрег, его толщина – 0,18 или 0,10 мм.

После выдерживания такого ‛пирога‛ под прессом при высокой температуре получается многослойная заготовка с готовыми внутренними слоями. Она проходит все те же операции, что и ДПП . Заметим, что типовая структура МПП предполагает наличие дополнительных слоев фольги в качестве наружных. То есть для четырехслойной плат ы , например, берется двухстороннее ядро и два слоя фольги, а для шестислойной плат ы – два двухсторонних ядра и два слоя фольги снаружи. Возможная толщина ядер – 0,27; 0,35; 0,51; 0,8 и 1,2 мм, фольги – 0,018 и 0,035 мм.

Особый класс МПП плат ы с несквозными межслойными переходными отверстиями. Переходные отверстия, идущие с наружного слоя на внутренний, называют «слепыми» (или «глухими»), а отверстия между внутренними слоями – ‛скрытыми‛ (или «погребенными»). Плат ы с несквозными отверстиями позволяют реализовать гораздо более плотную разводку схемы, но значительно дороже в производстве. Как правило, у каждого производителя имеются определенные ограничения на то, между какими именно слоями можно выполнить межслойные отверстия, поэтому перед созданием проекта следует с ним проконсультироваться.

ТИПОВЫЕ ПАРАМЕТРЫ ЭЛЕМЕНТОВ ПЕЧАТНОЙ ПЛАТ Ы

Общие параметры . Размеры элементов плат ы должны соответствовать требованиям ГОСТ 23751 для 3–5 классов точности – в зависимости от возможностей производителя. Типовая толщина плат ы – 1,6 мм (бывает 0,8; 1,0; 1,2; 2,0 мм). У ПП толще 2 мм могут возникнуть проблемы с металлизацией отверстий.

Типовая толщина медной фольги – 35 и 18 мкм. Толщина наращиваемой меди на проводниках и в отверстиях составляет еще примерно 35 мкм.

Переходные отверстия и проводники . Для хорошего отечественного производства, изготавливающего ПП по 4-му классу точности, типовое значение зазоров и проводников составляет 0,2 мм, минимальное – 0,15 мм. Оптимально использовать в исходных данных проводники 0,2 мм с зазором 0,15 мм. В рисунке проводников следует избегать острых углов.

Переходные отверстия: типовое/минимальное значение площадки 1,0/0,65 мм, отверстие – 0,5/0,2 мм, сверло – 0,6/0,3 мм. У сквозных отверстий для штыревого монтаж а диаметр площадки должен быть на 0,4–0,6 мм больше, чем диаметр отверстия (рис.1).

Для уменьшения вероятности срыва гарантийного пояска рекомендуется в месте присоединения проводника к площадке делать каплевидное утолщение (рис.2).

Планарные площадки . Вырез в маске должен быть больше размеров площадки по крайней мере на 0,05 мм, оптимальный вариант – по 0,1 мм с каждой стороны. Минимальная ширина полоски паяльной маски между площадками – 0,15 мм. Подсоединять площадки к полигонам лучше не сплошным контактом, а через проводники с зазором, предотвращающим отток тепла от площадки при монтаж е (рис.3). Линии маркировки не должны проходить поверх площадок для пайки. Ширина линии и зазор – 0,2 мм.


Особенности элементов МПП . Внутренние площадки в МПП надо делать на 0,6–0,8 мм больше, чем диаметр отверстия. Отторжение плана питания во внутренних слоях – не менее 0,2 и 0,4 мм с каждой стороны площадки и отверстия, соответственно.

Для уменьшения деформации печатной плат ы необходимо добиться максимальной симметричности рисунка и структуры внутренних слоев. По углам МПП необходимы крепежные отверстия диаметром 2–4 мм для проведения электроконтроля. Отторжение плана питания от крепежных отверстий – не менее 0,5 мм с каждой стороны отверстия.

Слепые и скрытые переходные отверстия . Для «слепых» отверстий, изготавливаемых сверлением с контролем глубины, соотношение диаметра и глубины должно быть не менее чем 1:1. Нормы проектирования для «скрытых» отверстий, изготовленных методом металлизации отверстий при подготовке внутренних слоев, такие же, как и для сквозных отверстий.

Источник информации: ЭЛЕКТРОНИКА: Наука, Технология, Бизнес 4/2001 ---

Не знаю как вы, а я с лютой ненавистью отношусь к классическим монтажным платам. Монтажка это такая хрень с дырками куда можно вставлять детальки и запаивать, где все соединения делаются посредством проводков. Вроде бы просто, но при этом получается такая каша, что понять в ней что либо весьма проблематично. Поэтому и ошибки и сгоревшие детали, непонятные глюки. Ну ее нафиг. Только нервы портить. Мне гораздо проще нарисовать в моем любимом схемку и тут же вытравить ее в виде печатной платы. С использованием лазеро-утюжного метода все выходит за каких то полтора часа ненапряжной работы. Ну и, конечно же, этот метод отлично подходит для выполнения финального устройства, так как качество печатных плат, получаемых таким методом весьма высоко. А поскольку данный метод весьма непрост для неискушенного, то я с радостью поделюсь своей отработанной технологией, позволяющей получать с первого раза и без каких либо напрягов, печатные платы с дорожками 0.3мм и просветом между ними до 0.2мм . В качестве примера я изготовлю отладочную плату для моего учебного курса, посвященного контроллеру AVR . Принципиальную вы найдете в записи , а

На плате разведена демосхема, а еще навалом медных пятачков, которые тоже можно высверлить и использовать под свои нужды, подобно обычной монтажной плате.

▌Технология изготовления качественных печатных плат в домашних условиях.

Суть метода изготовления печатных плат в том, что на фольгированный текстолит наносится защитный рисунок, который предотвращает травление меди. В результате, после травления, на плате остаются дорожки проводников. Способов нанесения защитных рисунков много. Раньше их рисовали нитрокраской, посредством стеклянной трубочки, потом стали наносить водостойкими маркерами или даже вырезать из скотча и наклеивать на плату. Также для любительского применения стал доступен фоторезист , который наносится на плату, а потом засвечивается. Засвеченные участки становятся растворимы в щелочи и смываются. Но по простоте применения, дешевизне и скорости изготовления все эти методы сильно проигрывают лазеро-утюжному методу (далее ЛУТ ).

Метод ЛУТ основан на том, что защитный рисунок образуется тонером, который посредством нагревания переносится на текстолит.
Так что нам потребуется лазерный принтер, благо они сейчас не редкость. Я использую принтер Samsung ML1520 с родным картриджем. Заправленные картриджи подходят крайне плохо, так как у них недостаточная плотность и равномерность выдачи тонера. В свойствах печати надо выставить максимальную плотность и контрастность тонера, обязательно отключить все режимы экономии — не тот случай.

▌Инструмент и материалы
Помимо фольгированного текстолита нам потребуется еще лазерный принтер, утюг, фотобумага, ацетон, мелкая шкурка, щетка для замши с металлопластиковым ворсом,

▌Процесс
Дальше рисуем рисунок платы в любой удобной для нас софтине и печатаем его. Sprint Layout. Простая рисовалка для плат. Чтобы нормально напечаталось надо слева цвета слоев выставить черным. Иначе получится фигня.

Вывод на печать, две копии. Мало ли, вдруг одну запортачим.

Вот тут заключается главная тонкость технологии ЛУТ из-за которой у многих возникают проблемы с выходом качественных плат и они бросают это дело. Путем множества экспериментов было выяснено, что самый лучший результат достигается при печати на глянцевой фотобумаге для струйных принтеров. Идеальной я бы назвал фотобумагу LOMOND 120г/м 2


Она стоит недорого, продается везде, а главное дает отличный и повторяемый результат, и не пригорает своим глянцевым слоем к печке принтера. Это очень важно, так как я слышал про случаи когда глянцевой бумагой загаживали печь принтера.

Заряжаем бумагу в принтер и смело печатаем на глянцевой стороне . Печатать нужно в зеркальном отображении, чтобы после переноса картинка соответствовала действительности. Сколько раз я ошибался и делал неправильные отпечатки, не пересчитать:) Поэтому первый раз лучше для пробы напечатать на обычной бумаге и проверить, чтобы все было правильно. Заодно и печку принтера прогреете.



После печати картинку ни в коем случае нельзя хватать руками и желательно беречь от пыли . Чтобы ничто не мешало соприкосновению тонера и меди. Далее вырезаем рисунок платы точно по контуру. Без каких либо запасов — бумага жесткая, поэтому все будет хорошо.

Теперь займемся текстолитом. Вырежем сразу же кусок нужного размера, без допусков и припусков. Столько, сколько нужно.


Его надо хорошенько зашкурить. Тщательно, стараясь содрать весь окисел, желательно круговыми движениями. Немного шершавости не повредит — тонер будет лучше держаться. Можно взять не шкурку, а абразивную губку «эффект». Только брать надо новую, не жирную.




Шкурку лучше взять самую мелкую какую найдете. У меня вот такая.


После зашкуривания его надо тщательнейшим же образом обезжирить. Я обычно тырю у жены ватную подушечку и, смочив ее как следует ацетоном, хорошенько прохожусь по всей поверхности. Опять же после обезжиривания ни в коем случае нельзя хватать его пальцами.

Накладываем наш рисунок на плату, естественно тонером вниз. Разогрев утюг на максимум , придерживая бумагу пальцем, хорошенько прижимаем и проглаживаем одну половину. Надо чтобы тонер прилип к меди.


Далее, не допуская сдвижения бумаги, проглаживаем всю поверхность. Давим изо всех сил, полируем и утюжим плату. Стараясь не пропустить ни миллиметра поверхности. Это ответственнейшая операция, от нее зависит качество всей платы. Не бойтесь давить изо всех сил, тонер не поплывет и не размажется, так как фотобумага толстая и отлично защищает его от расползания.

Гладим до тех пор, пока бумага не пожелтеет. Впрочем это зависит от температуры утюга. У меня на новом утюге не желтеет почти, а вот на старом почти обугливалось — результат везде был одинаково хорош.


После можно дать плате немного остыть. А затем, схватив пинцетом, суем под воду. И держим некоторое время в воде, обычно минуты две три.

Взяв щетку для замши, под сильной струей воды, начинаем яростно задирать внешнюю поверхность бумаги. Нам надо покрыть ее множественными царапинами, чтобы вода проникла в глубь бумаги. В подтверждение твоих действий будет проявление рисунка через плотную бумагу.


И вот этой щеткой дрючим плату пока не сдерем верхний слой.


Когда рисунок будет весь явно виден, без белых пятен, то можно начинать аккуратно, скатывать бумагу от центра к краям. Бумага Lomond скатывается великолепно, практически сразу же оставляя 100% тонера и чистую медь.


Скатав пальцами весь рисунок можно зубной щеткой хорошенько продраить всю плату, чтобы вычистить остатки глянцевого слоя и ошметки бумаги. Не бойся, зубной щеткой отодрать хорошо прижаренный тонер практически нереально.


Вытираем плату и даем ей просохнуть. Когда тонер высохнет и станет серым, то будет явно видно где осталась бумага, а где все чисто. Белесые пленочки между дорожками надо убирать. Можно разрушить их иголкой, а можно продрать зубной щеткой под струей воды. Вообще полезно пройтись щеткой вдоль дорожек. Из узких щелей белесый глянец можно вытаскивать с помощью изоленты или малярного скотча. Он липнет не так яростно как обычный и не срывает тонер. А вот остатки глянца отрывает без следа и сразу же.


Под светом яркой лампы внимательно оглядываем слои тонера на разрывы. Дело в том, что при охлаждении он может потрескаться, тогда в этом месте останется узкая трещина. Под светом лампы трещины поблескивают. Эти места стоит подкрасить перманентным маркером для компакт дисков. Даже если есть лишь подозрение, то лучше все же прокрасить. Этим же маркером можно дорисовать и некачественные дорожки, если таковые возникли. Я рекомендую маркер Centropen 2846 — он дает толстый слой краски и, фактически, им можно тупо рисовать дорожки.

Когда плата будет готова, то можно бодяжить раствор хлорного железа.


Техническое отступление, при желании можно его пропустить
Вообще травить можно много в чем. Кто то травит в медном купоросе, кто то в кислотных растворах, а я в хлорном железе. Т.к. продается оно в любом радио магазине, травит быстро и чисто.
Но у хлорного железа есть жуткий недостаток — оно марается просто писец. Попадет на одежду или любую пористую поверхность вроде дерева или бумаги все, считай пятно на всю жизнь. Так что свои фуфайки от Дольче Габаны или валенки от Гуччи нычь подальше в сейф и обматывай скотчем на три рулона. А еще хлорное железо самым жестоким образом разрушает почти все металлы. Особенно быстро аллюминий и медь. Так что посуда для травления должна быть стеклянной или пластиковой.

Я кидаю 250 граммовый пакет хлорного железа в литр воды . И полученным раствором травлю десятки плат, пока не перестанет травить.
Порошок надо сыпать в воду. И следи за тем, чтобы вода не перегревалась, а то реакция идет с выделением большого количества тепла.

Когда порошок весь растворится и раствор приобретет однородную окраску, то можно кидать туда плату. Желательно, чтобы плата плавала на поверхности, медью вниз. Тогда осадок будет сваливаться на дно емкости, не мешая травлению более глубоких слоев меди.
Чтобы плата не тонула, то можно на двусторонний скотч прилепить к ней кусок пенопласта. Я так и сделал. Получилось очень удобно. Шуруп я вкрутил для удобства, чтобы держатсья за него как за рукоятку.

Плату лучше несколько раз макнуть в раствор, причем опускать не плашмя, а под углом, чтобы на поверхности меди не остались пузырьки воздуха, иначе будут косяки. Периодически надо доставать из раствора и следить за процессом. В среднем на травление платы уходит от десяти минут до часа. Все зависит от температуры, крепости и свежести раствора.

Очень резко ускоряется процесс травления если под плату опустить шланчик от аквариумного компрессора и пускать пузырьки. Пузыри перемешивают раствор и мягко выбивают прореагировавшую медь с платы. Также можно покачивать плату или емкость, главное не расплескать, а то не отмоешь потом.

Когда вся медь стравится, то аккуратно вынимаем плату и промываем под струей воды. Дальше смотрим на просвет, чтобы нигде не было соплей и недотрава. Если сопли есть, то кидаем еще минут на десять в раствор. Если дорожки подтравились или возникли разрывы, то значит тонер криво лег и эти места надо будет пропаять медной проволокой.


Если все хорошо, то можно смывать тонер. Для этого нам потребуется ацетон — верный друг токсикомана. Хотя сейчас ацетон купить становится сложней, т.к. какой то придурок из госнаркоконтроля решил, что ацетон это вещество использующееся для приготовления наркотоиков, а значит нужно запретить его свободную продажу. Вместо ацетона вполне подходит 646 растворитель .


Берем кусок бинта и хорошенько смочив его ацетоном начинаем смывать тонер. Сильно давить не надо, главное возякать не слишком быстро, чтобы растворитель успевал впитываться в поры тонера, разьедая его изнутри. На смыв тонера уходит минуты две три. За это время даже зеленые собаки под потолком не успеют появиться, но форточку все же открыть не помешает.

Отмытую плату можно сверлить. Я для этих целей уже много лет использую моторчик от магнитофона, запитанный от 12 вольт. Монстр машина, правда хватает его ресурса примерно на 2000 отверстий, после чего щетки сгорают напрочь. А еще из него нужно выдрать схему стабилизации, подпаяв проводки напрямую к щеткам.


При сверловке нужно стараться держать сверло строго перпендикулярно. Иначе потом хрен ты туда микросхему засунешь. А с двусторонними платами этот принцип становится основным.


Изготовление двусторонней платы происходит также, только тут делаются три реперных отверстия, как можно меньшего диаметра. И после вытравливания одной стороны (другую в это время заклеивают скотчем, чтобы не стравилась) по этим отверстиям совмещают и накатывают вторую сторону. Первую заклеивают наглухо скотчем и травят вторую.

На лицевую сторону можно тем же ЛУТ методом нанести обозначение радиодеталей, для красоты и удобства монтажа. Впрочем, я так не заморачиваюсь, а вот камрад Woodocat из ЖЖ сообщества ru_radio_electr делает так всегда, за что ему большой респект!

В скором времени я, наверное, выдам также и статью по фоторезисту. Метод более замороченный, но в то же время мне им больше прикалывает делать — люблю с реактивами пошаманить. Хотя 90% плат я делаю все же ЛУТом.

Кстати, вот по поводу точности и качества плат изготовленных лазерно утюжным методом. Контроллер P89LPC936 в корпусе TSSOP28 . Расстояние между дорожками 0.3мм, ширина дорожек 0.3мм.


Резисторы на верхней плате типоразмера 1206 . Каково?

Когда в распоряжении есть лазерный принтер, радиолюбителями применяется технология изготовления печатных плат, которая называется ЛУТ. Однако такой прибор имеется далеко не в каждом доме, поскольку даже в наше время стоит он достаточно дорого. Еще есть технология изготовления с применением фоторезистивной пленки. Однако для работы с ней тоже нужен принтер, но уже струйный. Уже проще, но сама пленка стоит достаточно дорого, а начинающему радиолюбителю на первых порах лучше потратить имеющиеся средства на хорошую паяльную станцию и прочие принадлежности.
Можно ли изготовить печатную плату приемлемого качества в домашних условиях, не имея принтера? Да. Можно. Причем, если все сделать, как описано в материале, понадобится совсем немного денег и времени, а качество будет на очень высоком уровне. Во всяком случае электрический ток «побежит» по таким дорожкам с большим удовольствием.

Перечень необходимых инструментов и расходников

Начать стоит с подготовки инструментов, приспособлений и расходных материалов, без которых просто нельзя обойтись. Для реализации самого бюджетного способа изготовления печатных плат в домашних условиях понадобится следующее:
  1. Программное обеспечение для разработки рисунка.
  2. Прозрачная полиэтиленовая пленка.
  3. Узкий скотч.
  4. Маркер.
  5. Фольгированный стеклотекстолит.
  6. Наждачная бумага.
  7. Спирт.
  8. Ненужная зубная щетка.
  9. Инструмент для сверления отверстий диаметром от 0,7 до 1,2 мм.
  10. Хлорное железо.
  11. Пластиковая емкость для травления.
  12. Кисточка для рисования красками.
  13. Паяльник.
  14. Припой.
  15. Жидкий флюс.
Пройдемся кратенько по каждому пункту, так как есть некоторые нюансы, дойти до которых возможно только опытным путем.
Программ для разработки печатных плат существует сегодня огромное количество, но для начинающего радиолюбителя самым простым вариантом будет Sprint Layout. Несложно освоить интерфейс, пользоваться можно бесплатно, присутствует огромная библиотека, включающая распространенные радиокомпоненты.
Полиэтилен нужен для переноса рисунка с монитора. Лучше взять пленку пожестче, например, от старых обложек для школьных книг. Для ее крепления к монитору подойдет любой скотч. Лучше взять узкий – проще будет отклеивать (монитору эта процедура не вредит).
На маркерах стоит остановиться более подробно, так как это больная тема. Для переноса рисунка на полиэтилен, в принципе, подойдет любой вариант. А вот для рисования по фольгированному стеклотекстолиту нужен специальный маркер. Но тут есть маленькая хитрость, как сэкономить, и не покупать достаточно дорогие «специальные» маркеры для рисования печатных плат. Дело в том, что эти изделия по своим свойствам абсолютно ни чем не отличаются от обычных перманентных маркеров, которые продаются в 5-6 раз дешевле в любом канцелярском магазине. Но маркер должен обязательно иметь надпись «Permanent». Иначе ничего не получится.


Фольгированный стеклотекстолит можно брать любой. Лучше, если он будет потолще. Начинающим с таким материалом работать куда проще. Для его очистки понадобится наждачная бумага зернистостью около 1000 единиц, а также спирт (есть в любой аптеке). Последний расходник можно заменить жидкостью для сведения лака для ногтей, которая есть в любом доме, где живет женщина. Однако это средство довольно противно пахнет и долго выветривается.
Для сверления платы лучше иметь специальную мини-дрель или гравер. Однако можно пойти и более дешевым путем. Достаточно купить цанговый или кулачковый патрон под маленькие сверла и приспособить его к обычной бытовой дрели.
Хлорное железо можно заменить другими химическими средствами, включая те, которые уже наверняка есть в вашем доме. Например, подойдет раствор лимонной кислоты в перекиси водорода. Информацию о том, как готовятся альтернативные хлорному железу составы для травления плат, без проблем можно найти в Сети. Единственное, на что стоит обратить внимание, это на емкость для такой химии – она должна быть пластиковой, акриловой, стеклянной, но никак не металлической.
Про паяльник, припой и жидкий флюс подробнее говорить не стоит. Если радиолюбитель дошел до вопроса изготовления печатной платы, то с этими вещами он уже наверняка знаком.

Разработка и перенос рисунка платы на шаблон

Когда все вышеперечисленные инструменты, приспособления и расходные материалы подготовлены, можно браться за разработку платы. Если изготавливаемое устройство не уникальное, то гораздо проще будет скачать его проект из Сети. Подойдет даже обычный рисунок в формате JPEG.


Хотите пойти более сложным путем – рисуйте плату самостоятельно. Этот вариант часто бывает неизбежным, например, в ситуациях, когда у вас нет в наличии точно таких же радиодеталей, которые нужны для сборки оригинальной платы. Соответственно, заменяя компоненты аналогами, под них приходится выделять место на стеклотекстолите, подгонять отверстия и дорожки. Если проект уникальный, то плату придется разрабатывать с нуля. Для этого и нужно вышеупомянутое программное обеспечение.
Когда макет платы готов, его остается только перенести на прозрачный шаблон. Полиэтилен фиксируется прямо на мониторе при помощи скотча. Далее просто переводим имеющийся рисунок – дорожки, контактные пятачки и так далее. Для этих целей лучше всего использовать все тот же перманентный маркер. Он не стирается, не размазывается, и его хорошо видно.

Подготовка фольгированного стеклотекстолита

Следующим этапом идет подготовка стеклотекстолита. Для начала нужно отрезать его по размерам будущей платы. Делать это лучше с небольшим запасом. Для раскройки фольгированного стеклотекстолита можно использовать одни из нескольких способов.
Во-первых, материал отлично режется при помощи ножовки по металлу. Во-вторых, если у вас есть гравер с отрезными кругами, то удобно будет использовать его. В-третьих, стеклотекстолит можно отрезать по размеру канцелярским ножом. Принцип раскройки такой же, как и при работе со стеклорезом – в несколько проходов наносится линия отреза, затем материал просто отламывается.



Теперь обязательно нужно очистить медный слой стеклотекстолита от защитного покрытия и окисла. Лучшего способа, чем обработка наждачной бумагой, для решения этой задачи нет. Зернистость берется от 1000 до 1500 единиц. Цель – получить чистую блестящую поверхность. До зеркального блеска зачищать медный слой не стоит, так как мелкие царапины от наждачной бумаги увеличивают адгезию поверхности, что понадобится дальше.
В завершение остается только очистить фольгу от пыли и следов ваших пальцев. Для этого используется спирт или ацетон (жидкость для снятия лака). После обработки к медной поверхности руками не прикасаемся. Для последующих манипуляций захватываем стеклотекстолит за грани.

Совмещение шаблона и стеклотекстолита


Теперь нашей задачей является совмещения полученного на полиэтилене рисунка с подготовленным стеклотекстолитом. Для этого пленка накладывается на нужное место и позиционируется. Остатки заворачиваются на обратную сторону и крепятся при помощи все того же скотча.


Сверление отверстий

Перед сверлением рекомендуется каким-либо способом закрепить стеклотекстолит с шаблоном на поверхности. Это позволит добиться большей точности, а также исключит внезапное проворачивание материала во время прохода сверла насквозь. Если у вас есть сверлильный станок для такой работы, то описанная проблема вообще не возникнет.


Сверлить отверстия в стеклотекстолите можно на любой скорости. Кто-то работает на малых оборотах, кто-то на больших. Опыт показывает, что сами сверла служат намного дольше, если их эксплуатировать на низких скоростях. Так их сложнее сломать, погнуть и повредить заточку.
Отверстия сверлятся прямо через полиэтилен. Ориентирами будут служить будущие контактные пятачки, нарисованные на шаблоне. Если того требует проект, то своевременно меняем сверла под нужный диаметр.

Рисование дорожек

Далее шаблон снимается, но не выбрасывается. К медному покрытию по-прежнему стараемся не прикасаться руками. Для рисования дорожек используем маркер, обязательно перманентный. Его хорошо видно по следу, который он оставляет. Рисовать лучше за один проход, так как после застывания лака, который есть в составе перманентного маркера, правки делать будет весьма затруднительно.


В качестве ориентира используем все тот же шаблон из полиэтилена. Можно рисовать также перед компьютером, сверяясь с оригинальным макетом, где есть маркировка и прочие пометки. Если есть возможность, то лучше использовать несколько маркеров с наконечниками разной толщины. Это позволит более качественно прорисовать и тонкие дорожки, и обширные полигоны.



После нанесения рисунка обязательно ждем некоторое время, необходимое для окончательного отвердевания лака. Можно даже подсушить феном. От этого будет зависеть качество будущих дорожек.

Травление и очистка дорожек от маркера

Теперь самое интересное – травление платы. Тут есть несколько нюансов, о которых мало кто упоминает, но они существенно влияют на качество результата. В первую очередь готовим раствор хлорного железа согласно рекомендациям на упаковке. Обычно порошок разбавляется водой в соотношении 1:3. И тут первый совет. Сделайте раствор более насыщенным. Это поможет ускорить процесс, и нарисованные дорожки не отвалятся прежде, чем вытравится все необходимое.


Сразу же совет второй. Ванночку с раствором рекомендуется погрузить в горячую воду. Можно нагреть ее в металлической посуде. Повышение температуры, как известно еще со школьной программы, значительно ускоряет химическую реакцию, которой травление нашей платы и является. Сокращение времени процедуры нам на руку. Нанесенные маркером дорожки достаточно нестабильны, и чем меньше они будут киснуть в жидкости, тем лучше. Если при комнатной температуре плата в хлорном железе травится около часа, то в теплой воде этот процесс сокращается до 10 минут.
В завершение еще один совет. В процессе травления, хоть он и так ускорен за счет подогрева, рекомендуется постоянно двигать плату, а также счищать продукты реакции щеточкой для рисования. Совмещая все вышеописанные манипуляции вполне возможно вытравить лишнюю медь всего за 5-7 минут, что является просто отличным результатом для этой технологии.


В конце процедуры плату нужно тщательно промыть под проточной водой. Затем просушиваем ее. Остается только смыть следы от маркера, все еще закрывающие наши дорожки и пятачки. Делается это все тем же спиртом или ацетоном.

Лужение печатных плат

Перед лужением еще раз обязательно проходимся по медному слою наждачной бумагой. Но теперь делаем это предельно осторожно, чтобы не повредить дорожки. Самый простой и доступный способ лужения – традиционный, с помощью паяльника, флюса и припоя. Можно также использовать сплавы Розе или Вуда. Также существует на рынке так называемое жидкое олово, которое значительно может упростить задачу.
Но все эти новые технологии требуют дополнительных затрат и некоторого опыта, потому для первого раза подойдет и классический метод лужения. На очищенные дорожки наносится жидкий флюс. Далее набирается припой на жало паяльника и распределяется по оставшейся после травления меди. Здесь важно прогреть дорожки, иначе припой может не «приклеиться».


Если у вас все же есть сплавы Розе или Вуда, то их можно использовать и не по технологии. Они просто замечательно плавятся паяльником, легко распределяются по дорожкам, не сбиваются в комки, что для начинающего радиолюбителя будет только плюсом.

Заключение

Как видно из вышеописанного, бюджетная технология изготовления печатных плат в домашних условиях действительно доступная и недорогая. Не нужен ни принтер, ни утюг, ни дорогущая фоторезистивная пленка. Используя все вышеописанные советы вы легко сможете изготавливать простейшие электронные , не вкладывая в это больших денег, что очень важно на первых этапах занятия радиолюбительством.